We love measuring
our world
Move Solutions provides wireless sensors and software for structural health monitoring, diagnostics, and proactive asset management.
Deploy wireless devices on site. Sensors connect automatically via LoRaWAN.
Data flows to the cloud and is managed in MyMove, remotely and in real time.
Turn raw data into engineering insights with advanced built-in Tools for smart structural analysis.
Generate customized PDF reports automatically—ready to share with contractors, stakeholders, or authorities.
























A new standard in structural monitoring
High‑precision wireless sensing, long‑term autonomy, cloud data management, remote configuration, real‑time structural analytics, and automated reporting—all integrated in one robust SHM ecosystem.
Explore our wireless sensorsEnvironmental monitoring for structural insight

The all-in-one
structural health monitoring platform
MyMove is the cloud platform that powers your structural health monitoring system.
It collects data from wireless and third-party sensors, organizes it by asset, and delivers engineering-grade insights—anytime, anywhere.

From sensor data to structural insight
Analyze time-series data, compare sensors, and uncover structural trends. MyMove turns raw measurements into insight and delivers shareable PDF reports automatically.
Create custom charts and profiles
Correlate multiples historical trends
Custom PDF templates with branding and layout
Scheduled reports for clients and authorities

Remote configuration and alarm control
MyMove enables full remote management of your structural monitoring system. Directly from the platform, engineers can configure sampling intervals, communication frequency, firmware updates, and threshold-based alarms based on real-time or derived parameters.
Sensor-level configuration of acquisition mode, frequency, triggers, and more
Definition of multi-parameter alarms and threshold conditions
Continuous diagnostics on signal strength and connectivity
Smart tools for structural health monitoring
MyMove includes built-in Advanced Tools specifically designed to simplify and optimize the monitoring of complex infrastructure applications.
No external software. No post-processing. Just clear, actionable insights.
Tiltmeter Chains Tool – compute spatial displacement and deformation trendsure frequency, triggers, and more
Modal Analysis Tool – identify modal frequencies, damping, and vibration modes
Rail Monitoring Tool – track cant, twist, and vertical alignment over time

Correlate long-term behavior

Full control of raw sensor data

Custom PDF reports for any stakeholder

Monitor health and connectivity

Manage devices remotely

Set multi-parameter alarms

Modal Analysis Tool

Tiltmeter Chains Tool

Bulk sensor setup & calibration

Book a live demo with our team
Discover how our platform collects data, manages your sensors remotely, and delivers structural insights—live, in one call.
Monitoring solutions
for every infrastructure type
Move Solutions supports a wide range of structural and geotechnical monitoring applications.
Worldwide success stories
Discover how our monitoring systems are used worldwide to solve real engineering challenges across bridges, tunnels, railways, and more.

Tilt and Vibration Monitoring of a Railway Bridge
The bridge located on the Scrivia river, one of the arteries of the homonymous valley, is a structure all about 160 meters long and is divided into 7 spans with lowered arches, in reinforced concrete. Built-in the early 1900s, it served as a road and rail bridge for years. In 1980 the extension of the bridge over the Scrivia (structure in reinforced concrete with slab and beams) was carried out and also a shift of the railway network to its own site, thus splitting the two uses. To monitor the health of the bridge, a wireless sensor network was installed consisting of DECK to monitor displacement and Triaxial Tiltmeter to monitor the inclination of the […]
Casella, Genoa, Italy

Dynamic Monitoring of the Vespucci Bridge in Florence
The Vespucci bridge is one of the central bridges of Florence that allows you to join the San Frediano district to the rest of the city, separated by the Arno river. It is a structure in c.a.p. arch divided into 3 spans, with an overall length of 162m. Designed by Riccardo Morandi and built between 1954-1957, suffers from deterioration of the concrete, like many works of the time. This deterioration has affected the two piers even more markedly, especially the one on the left (San Frediano side) due to the erosion of the riverbed by the currents of the Arno river. This structural deterioration required continuous monitoring and safety works.
Florence, Italy

The Chetwynd Bridge Monitoring
The Chetwynd Bridge, a Grade I* listed three-arch cast-iron structure, located in Staffordshire, England, is the largest surviving pre-1830s cast-iron bridge in England and the second largest in the world. Due to the historical significance and age of the bridge, a detailed restoration project was initiated to repair the ironwork and restore the paintwork in a way that aligned with its historical importance.
Staffordshire, UK
Request a tailored quote for your monitoring needs
Get a customized quotation based on your project specifications — from sensor selection to platform configuration and deployment support.
Request a quote now






