Displacement, vibration, and modal analysis for bridges
Monitor displacements, tilts, vibrations and critical loads to ensure long-term stability and detect early signs of structural fatigue.


Why monitor bridges?
Bridge structures exhibit complex static and dynamic behavior influenced by traffic loads, temperature variation, foundation movement, and material fatigue.Effective monitoring requires focusing on critical components where structural performance, stability, or safety can degrade over time.
How structural monitoring system works
From sensor installation to data analysis, Move Solutions delivers a fully wireless structural health monitoring solution.
Deploy wireless devices on site. Sensors connect automatically via LoRaWAN.
Data flows to the cloud and is managed in MyMove, remotely and in real time.
Turn raw data into engineering insights with advanced built-in Tools for smart structural analysis.
Generate customized PDF reports automatically—ready to share with contractors, stakeholders, or authorities.
Benefits of using Move Solutions for bridge monitoring
Ensure structural safety and performance with a wireless, scalable, and fully remote monitoring system. From deck deflections to pier settlement and modal response, Move Solutions delivers high-precision data and real-time diagnostics tailored to bridge infrastructure.
Key points of structural monitoring




Recommended wireless devices
Move Solutions offers high-precision, low-power sensors for structural, geotechnical, and environmental monitoring.
The all-in-one
structural health monitoring platform
MyMove is the cloud platform that powers your structural health monitoring system.
It collects data from wireless and third-party sensors, organizes it by asset, and delivers engineering-grade insights—anytime, anywhere.

From sensor data to structural insight
Analyze time-series data, compare sensors, and uncover structural trends. MyMove turns raw measurements into insight and delivers shareable PDF reports automatically.
Create custom charts and profiles
Correlate multiples historical trends
Custom PDF templates with branding and layout
Scheduled reports for clients and authorities

Remote configuration and alarm control
MyMove enables full remote management of your structural monitoring system. Directly from the platform, engineers can configure sampling intervals, communication frequency, firmware updates, and threshold-based alarms based on real-time or derived parameters.
Sensor-level configuration of acquisition mode, frequency, triggers, and more
Definition of multi-parameter alarms and threshold conditions
Continuous diagnostics on signal strength and connectivity
Smart tools for structural health monitoring
MyMove includes built-in Advanced Tools specifically designed to simplify and optimize the monitoring of complex infrastructure applications.
No external software. No post-processing. Just clear, actionable insights.
Tiltmeter Chains Tool – compute spatial displacement and deformation trendsure frequency, triggers, and more
Modal Analysis Tool – identify modal frequencies, damping, and vibration modes
Rail Monitoring Tool – track cant, twist, and vertical alignment over time

Correlate long-term behavior

Full control of raw sensor data

Custom PDF reports for any stakeholder

Monitor health and connectivity

Manage devices remotely

Set multi-parameter alarms

Modal Analysis Tool

Tiltmeter Chains Tool

Bulk sensor setup & calibration

Book a live demo with our team
Discover how our platform collects data, manages your sensors remotely, and delivers structural insights—live, in one call.
Everything you need to monitor your bridge
Get the full brochure to explore sensor configurations and monitored structural components.
Download bridge monitoring brochure
Worldwide success stories
Discover how our monitoring systems are used worldwide to solve real engineering challenges across bridges, tunnels, railways, and more.

Tilt and Vibration Monitoring of a Railway Bridge
The bridge located on the Scrivia river, one of the arteries of the homonymous valley, is a structure all about 160 meters long and is divided into 7 spans with lowered arches, in reinforced concrete. Built-in the early 1900s, it served as a road and rail bridge for years. In 1980 the extension of the bridge over the Scrivia (structure in reinforced concrete with slab and beams) was carried out and also a shift of the railway network to its own site, thus splitting the two uses. To monitor the health of the bridge, a wireless sensor network was installed consisting of DECK to monitor displacement and Triaxial Tiltmeter to monitor the inclination of the […]
Casella, Genoa, Italy

Ensuring Safety and Efficiency for Denver’s Platte River Bridge
Denver’s Platte River Bridge is a single-span pedestrian bridge with a unique design that poses distinctive challenges relating to structural movement. To ensure the bridge remains safe and operational, the City and County of Denver embarked on a pioneering project with Stantec, a global engineering firm, to monitor the condition of the bridge. This innovative project uses iTwin IoT software from Bentley Systems, along with 16 wireless sensors from Move Solutions, to remotely monitor the bridge and provide continuous access to reliable data and analysis on the health of the structure.
Denver, Colorado, USA

Dynamic Monitoring of the Vespucci Bridge in Florence
The Vespucci bridge is one of the central bridges of Florence that allows you to join the San Frediano district to the rest of the city, separated by the Arno river. It is a structure in c.a.p. arch divided into 3 spans, with an overall length of 162m. Designed by Riccardo Morandi and built between 1954-1957, suffers from deterioration of the concrete, like many works of the time. This deterioration has affected the two piers even more markedly, especially the one on the left (San Frediano side) due to the erosion of the riverbed by the currents of the Arno river. This structural deterioration required continuous monitoring and safety works.
Florence, Italy
Ready to monitor your bridge?
Talk to our engineers, schedule a demo, or request a proposal.
Contact our team






